
Declarative query processing in
imperative managed runtimes

Stratis D. Viglas
Google, US & School of Informatics, University of Edinburgh, UK
sviglas@google.com

Active/HardBD 2017

(managed) runtime

Multi-tier applications

application logic

volatile
memory heap

serialization protocol
secondary

storage

SQL

data structures

(managed) runtime

What’s changing?

application logic

volatile
memory heap

data structures

serialization protocol
secondary

storage

SQL

(managed) runtime

What’s changing?

application logic

persistent
memory heap

data structures

serialization protocol
secondary

storage

SQL

In this talk

• Code generation for just-in-time query compilation

– Starting from compiling SQL to C

– Moving on to managed runtimes and language-integrated queries

• Write-limited algorithms for persistent memory

– Staging algorithms for query processing

– API to enable dynamic optimization

– A runtime to support the API

Just-in-time code generation for
query processing

Part I

Database systems architecture
• Roughly decomposed into four main building blocks

– Query engine

– Storage manager

– Transaction manager

– Recovery manager

• Relatively orthogonal aspects

– Improvements in one block improve the system overall

– Or, at least, we try to abide by that rule

query engine
transaction

manager

storage manager recovery manager

Zooming in to query processing
• Queries go through a sequence of transformations

– Parsing

• SQL to abstract syntax tree (AST)

– Rewriting

• AST to logical plan

• Potentially more than one rewriting
passes

– Optimization

• Logical plan to physical plan

• Interpretation-based approach

– Query engine interprets the query plan to
produce results

parser

rewriter

interpreter

optimizer

query

SQL

AST

logical plan

physical plan

Holistic techniques
• Template-inspired approach

– Languages like C++ generate type-specific code in their standard library
– Reduces bloat of generic implementations
– Operators are templated and instantiated per query

• At the same time, look at the query holistically
– Collapse operations when possible
– Generate type-specific code
– Eliminate function calls apart from the necessary
– Source to source transformation: from SQL to C

• Leave orthogonal aspects of the system unaffected

• Treat SQL truly as a managed runtime with just-in-time compilation capability

storage manager

executorpreparator

frontend

HIQUE – the Holistic Integrated Query Engine

query results

parser evaluator

optimizer linker

generator compiler

bufferpoolDB tablescatalog

AST

plan
code

binary

library file
schemas

statistics

types

pages

Example generated code
/* Inlined code to stage inputs */
hash: /* examine corresponding partitions together */
for (k = 0; k < M; k++) {
 /* algorithm bookkeeping */
 /* loop over pages */
 for (p_1 = start_page_1; p_1 <= end_page_1; p_1++) {
 page_struct *page_1 = read_page(p_1, partition_1[k]);
 for (p_2 = start_page_2; p_2 <= end_page_2; p_2++) {
 page_struct *page_2 = read_page(p_2, partition_2[k]);
 ...
 for (p_m = start_page_m; p_m <= end_page_m; p_m++) {
 page_struct *page_m = read_page(p_m, partition_m[k]);
 /* for each page loop over tuples in the page */
 for (t_1 = 1; t_1 <= page_1->num_tuples; t_1++) {
 void *tuple_1 = page_1->data + t_1 * tuple_size_1;
 for (t_2 = 1; t_2 <= page_2->num_tuples; t_2++) {
 void *tuple_2 = page_2->data + t_2 * tuple_size_2;
 int *t1 = tuple_1 + offset_1;
 int *t2 = tuple_2 + offset_2;
 if (*t1 != *t2) {
 merge: /* update bounds for all loops */
 continue; }
 ...
 for (t_m = 1; t_m <= page_m->num_tuples; t_m++){
 ...
} ...}}}...}}}

nested loops

fixed strides

type-specific computation

managed runtime

Language-integrated query (C#)

application

data store

managed heap

query engine

LINQ-to-objects

references

enumerable

collections

LINQ

LINQ-to-objects in more detail

List<Order> orders = new List<Order>();

// Add data elements to order

var qry_stmt = orders
 .Where(o => o.orderdate > new DateTime (1/1/1999))

 .Select(o => o.price * (1 - o.discount));

foreach (var r in qry_stmt) {

 // Consume query result

}

query statement
declaration

query execution

Standard execution
IEnumerable<T> Where<T> (
 this IEnumerable<T> src,

 Func<T, bool> pred {

 foreach (T s in src) {

 if (pred(s))

 yield return s;

}}

• Virtual function calls to propagate
objects through pipeline

• Lambda expression calls to allow
generic implementations

• Compiler cannot inline because
target not known at compile time

foreach

where

select

orders

Query compilation

• Dynamically compile queries at run-time

– Single, specialized operator that evaluates the entire query

IEnumerable<Decimal> Query (List<Order> src) {
 foreach (Order s in src) {
 if (s.orderdate > new DateTime (1/1/1999))
 yield return (s.price * (1 - s.discount));
 }
}

foreach

query

orders

Compilation architecture
• Query compiler is implemented as a LINQ query provider

query tree code
tree

C#/C code

query
cache

DLL

definition of
standard query

operators

compiled query
operator

query compiler

The bad news

• Basic approach is limited by performance of C#

• Relies on (cache) inefficient memory layout dictated by garbage collection

database memory
layout

=
good!

managed
collection

layout
=

bad!

Planning ahead

• Preferably we would like to perform query processing in native C code and have
control over data layout

– Not possible to access managed objects in C

– Not possible to control data layout of objects

• But: structs are value types (in C#) and, hence

– Are not managed by garbage collector

– Allow some control over data layout

Adding more C into C#

• Represent dataset as arrays of
structs

• Dual operator approach:

– C# operator interacts with
application code by returning
query result

– C operator processes query on
arrays of structs

foreach

C operator

C# operator

orders

Staged query processing (from C# to C and back)

• Store data as collections of objects

• Stage data in C# (as arrays of structs) and perform heavy-lifting of query in C on
staged data

• Fall back to basic approach for simple operations

foreach

C operatorC# operator

orders

buffers

Staging in more detail
• Apply selections (fewer elements copied)

• Apply implicit projections (fewer fields copied)

• Flatten-out nested objects (removes references)

managed heap staged buffers

staging

Indicative results over TPC-H

Write-limited algorithms for persistent
memory

Part II

Properties of persistent memory

• Latency comparable to DRAM

– But not DRAM

• Asymmetry: writes more expensive than reads (up to 15x)

– Similar to flash memory; much faster overall, but more pronounced
asymmetry

• Not a block device

– Byte-addressable, behaves as memory

– Potentially accessed through CPU loads and stores

– Game-changing property

Incorporating persistent memory

• Persistent memory bridges the gap between disk and memory

– Universal device, universal optimization objectives

• But how should it be treated?

– As byte-addressable, albeit somewhat slower memory?

– Or as block-addressable but faster persistent storage?

– Neither? Both?

• What is the impact on system aspects?

• This work

– Optimization of fundamental query processing algorithms and a runtime to
support them

In more detail

• Design and implementation of persistent-memory-friendly algorithms for query
processing

– And a runtime to support them

• Focus on two fundamental operations

– Sorting and join processing

• Why these two?

– Well, we are doing databases after all!

– But the goal is farther-reaching

• Write-limited algorithms

– Trade writes for reads with tunable write-intensity

– Guarantee when they outperform existing algorithms

General setup

• Overarching goal: trade writes for reads

• Persistent memory I/O takes place in cacheline-sized units (termed buffers)

• Under the assumption there is a ratio λ=w/r where w is the write cost of the medium;
r is the read cost; λ > 1

• Two general classes of algorithms

– Split processing into a write-incurring and a write-limited part; or

– Process lazily by performing extra reads and incur writes only when the
accumulated read cost is too high

System overview

runtime and algorithms

bufferpool

persistence layer

persistent collections

DRAM

blocks

Limiting writes in sorting: segment sort

write-incurring mergesort on x% read-only selection sort on (1-x)%

continuous
extraction of next
batch of minimum

values

Limiting writes in join processing: lazy join
• Objective: process input one hash partition at a time

• Instead of scanning and materializing the partitioned input

– Extract each partition by rescanning the entire input

– Keep track of saved cost (by not writing) and penalty (by rescanning)

– Materialize when cost exceeds savings

partition 1

partition 2

partition 3

materialized partitions
4, …, m

Runtime support: procrastination is bliss

• Each operator belongs to an operator context

• Express algorithms in terms of a common API

– Record the workflow in a control flow graph

• Do not materialize any collection until it is accessed

– Upon access, assess() it to see if it should be materialized

– If collection is to be materialized, produce() it by walking the control flow
graph

– If not, go to the last materialized parent and apply recorded operations
dynamically to produce

An API for recording algorithmic workflow

• split(T, n, Tl, Th)

– Split collection T at position n into Tl and Th

• partition(T, h(), k, [Ti],[si] = |T|/k)

– Partition collection T into k partitions T1 to Tk using h() as the partitioning
function

– Size of each partition expected to be s1 to sk

– Last argument optional and reverts to |T|/k

• filter(T, p(), f, Tp)

– Filter collection T into Tp using predicate p()

– Output size expected to be f |T | (where f ∈ [0, 1])

• merge(Tl, Tr, m(), T)

– Merge collections Tl and Tr into T using m() as the merging function

Example control flow graph

T

V

partition
hash(x) mod 3

partition
hash(x) mod 3

T0

T1

T2

V0

V1

V2

merge
T0 ⋈ V0

merge
T1 ⋈ V1

merge
T2 ⋈ V2

S

Optimizing the workflow

T

V

partition
hash(x) mod 3

partition
hash(x) mod 3

T0

T1

T2

V0

V1

V2

merge
T0 ⋈ V0

merge
T1 ⋈ V1

merge
T2 ⋈ V2

S

• Use the sum to decide whether cheaper to keep subsequent collection deferred or
materialize

• Trigger materialization using rules based on heuristics for access pattern detection

• Track accumulated numbers
of cacheline reads and writes
per materialized collection

Implementation alternatives

• Four alternatives for incorporating persistent memory into the hierarchy

– RAM disk: a full-blown file system running on top of main memory (with true
file system overheads)

– PMFS: a persistent memory file system, optimized for byte-addressable
storage

– Dynamic array: the typical collection one would use for expandable arrays
when programming for main-memory

– Blocked memory: an optimized blocked memory implementation of
expandable arrays

Indicative results: sorting 1M records

Sorting 1M records: implementation alternatives

Summary
• Large memories means that data processing will likely be memory-bound

– No need for separate runtimes for application logic and data management

– Data processed in the managed runtime, using language-integrated querying

– Just-in-time code generation for query processing

• Memories not only large, but also non-volatile

– With different performance characteristics

– Write-limited algorithms and a dynamic runtime to optimize performance

• Management at all levels

– Different applications require different representations for the same data

– Workload-driven dynamic data placement

Acknowledgments
• Students

– Konstantinos Krikellas

– Ioannis Koltsidas

– Vasilis Vasaitis

– Fabian Nagel

– Andreas Chatzistergiou

– Arpit Joshi

– Michail Basios

– Matt Pugh

– Chris Perivolaropoulos

• Collaborators

– Gavin Bierman (Oracle)

– Marcelo Cintra (Intel)

– Aleksandar Dragojevic (MSR)

– Boris Grot (UoE)

– Vijay Nagarajan (UoE)

Summary
• Large memories means that data processing will likely be memory-bound

– No need for separate runtimes for application logic and data management

– Data processed in the managed runtime, using language-integrated querying

– Just-in-time code generation for query processing

• Memories not only large, but also non-volatile

– With different performance characteristics

– Write-limited algorithms and a dynamic runtime to optimize performance

• Management at all levels

– Different applications require different representations for the same data

– Workload-driven dynamic data placement

