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In this talk

• Code generation for just-in-time query compilation

– Starting from compiling SQL to C

– Moving on to managed runtimes and language-integrated queries

• Write-limited algorithms for persistent memory

– Staging algorithms for query processing

– API to enable dynamic optimization

– A runtime to support the API



Just-in-time code generation for 
query processing

Part I



Database systems architecture
• Roughly decomposed into four main building blocks

– Query engine

– Storage manager

– Transaction manager

– Recovery manager

• Relatively orthogonal aspects

– Improvements in one block improve the system overall

– Or, at least, we try to abide by that rule
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Zooming in to query processing
• Queries go through a sequence of transformations

– Parsing

• SQL to abstract syntax tree (AST)

– Rewriting

• AST to logical plan

• Potentially more than one rewriting 
passes

– Optimization

• Logical plan to physical plan

• Interpretation-based approach

– Query engine interprets the query plan to 
produce results
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Holistic techniques
• Template-inspired approach

– Languages like C++ generate type-specific code in their standard library
– Reduces bloat of generic implementations
– Operators are templated and instantiated per query

• At the same time, look at the query holistically
– Collapse operations when possible
– Generate type-specific code
– Eliminate function calls apart from the necessary
– Source to source transformation: from SQL to C

• Leave orthogonal aspects of the system unaffected

• Treat SQL truly as a managed runtime with just-in-time compilation capability
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Example generated code
/* Inlined code to stage inputs */
hash: /* examine corresponding partitions together */
for (k = 0; k < M; k++) { 
  /* algorithm bookkeeping */
  /* loop over pages */
  for (p_1 = start_page_1; p_1 <= end_page_1; p_1++) {
    page_struct *page_1 = read_page(p_1, partition_1[k]); 
    for (p_2 = start_page_2; p_2 <= end_page_2; p_2++) {
      page_struct *page_2 = read_page(p_2, partition_2[k]);
      ...
      for (p_m = start_page_m; p_m <= end_page_m; p_m++) {
        page_struct *page_m = read_page(p_m, partition_m[k]);
        /* for each page loop over tuples in the page */
        for (t_1 = 1; t_1 <= page_1->num_tuples; t_1++) {
          void *tuple_1 = page_1->data + t_1 * tuple_size_1; 
          for (t_2 = 1; t_2 <= page_2->num_tuples; t_2++) {
            void *tuple_2 = page_2->data + t_2 * tuple_size_2; 
            int *t1 = tuple_1 + offset_1;
            int *t2 = tuple_2 + offset_2;
            if (*t1 != *t2) {
              merge: /* update bounds for all loops */
              continue; }
              ...
              for (t_m = 1; t_m <= page_m->num_tuples; t_m++){
                ...
} ...}}}...}}}

nested loops

fixed strides

type-specific computation
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LINQ-to-objects in more detail

List<Order> orders = new List<Order>();

// Add data elements to order

var qry_stmt = orders
               .Where(o => o.orderdate > new DateTime (1/1/1999))

               .Select(o => o.price * (1 - o.discount)); 

foreach (var r in qry_stmt) { 

   // Consume query result 

}

query statement 
declaration

query execution



Standard execution
IEnumerable<T> Where<T> (
     this IEnumerable<T> src,

 Func<T, bool> pred {

  foreach (T s in src) { 

    if (pred(s))

      yield return s; 

}} 

• Virtual function calls to propagate 
objects through pipeline 

• Lambda expression calls to allow 
generic implementations 

• Compiler cannot inline because 
target not known at compile time 
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Query compilation

• Dynamically compile queries at run-time

– Single, specialized operator that evaluates the entire query

IEnumerable<Decimal> Query (List<Order> src) {
  foreach (Order s in src) {
    if (s.orderdate > new DateTime (1/1/1999))
      yield return (s.price * (1 - s.discount));
  }
}

foreach

query

orders



Compilation architecture
• Query compiler is implemented as a LINQ query provider
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The bad news

• Basic approach is limited by performance of C# 

• Relies on (cache) inefficient memory layout dictated by garbage collection 
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Planning ahead

• Preferably we would like to perform query processing in native C code and have 
control over data layout 

– Not possible to access managed objects in C 

– Not possible to control data layout of objects 

• But: structs are value types (in C#) and, hence

– Are not managed by garbage collector

– Allow some control over data layout 



Adding more C into C#

• Represent dataset as arrays of 
structs 

• Dual operator approach: 

– C# operator interacts with 
application code by returning 
query result 

– C operator processes query on 
arrays of structs 
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Staged query processing (from C# to C and back)

• Store data as collections of objects

• Stage data in C# (as arrays of structs) and perform heavy-lifting of query in C on 
staged data 

• Fall back to basic approach for simple operations

foreach

C operatorC# operator

orders

buffers



Staging in more detail
• Apply selections (fewer elements copied) 

• Apply implicit projections (fewer fields copied)

• Flatten-out nested objects (removes references) 

managed heap staged buffers

staging



Indicative results over TPC-H



Write-limited algorithms for persistent 
memory

Part II



Properties of persistent memory

• Latency comparable to DRAM

– But not DRAM

• Asymmetry: writes more expensive than reads (up to 15x) 

– Similar to flash memory; much faster overall, but more pronounced 
asymmetry 

• Not a block device 

– Byte-addressable, behaves as memory

– Potentially accessed through CPU loads and stores

– Game-changing property



Incorporating persistent memory

• Persistent memory bridges the gap between disk and memory 

– Universal device, universal optimization objectives 

• But how should it be treated?

– As byte-addressable, albeit somewhat slower memory? 

– Or as block-addressable but faster persistent storage?

– Neither? Both? 

• What is the impact on system aspects? 

• This work

– Optimization of fundamental query processing algorithms and a runtime to 
support them 



In more detail

• Design and implementation of persistent-memory-friendly algorithms for query 
processing 

– And a runtime to support them 

• Focus on two fundamental operations

– Sorting and join processing 

• Why these two? 

– Well, we are doing databases after all! 

– But the goal is farther-reaching

• Write-limited algorithms

– Trade writes for reads with tunable write-intensity 

– Guarantee when they outperform existing algorithms



General setup

• Overarching goal: trade writes for reads

• Persistent memory I/O takes place in cacheline-sized units (termed buffers) 

• Under the assumption there is a ratio λ=w/r where w is the write cost of the medium; 
r is the read cost; λ > 1

• Two general classes of algorithms 

– Split processing into a write-incurring and a write-limited part; or 

– Process lazily by performing extra reads and incur writes only when the 
accumulated read cost is too high 
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Limiting writes in sorting: segment sort

write-incurring mergesort on x% read-only selection sort on (1-x)%

continuous 
extraction of next 
batch of minimum 

values



Limiting writes in join processing: lazy join
• Objective: process input one hash partition at a time

• Instead of scanning and materializing the partitioned input

– Extract each partition by rescanning the entire input

– Keep track of saved cost (by not writing) and penalty (by rescanning)

– Materialize when cost exceeds savings

partition 1

partition 2

partition 3

materialized partitions
4, …, m



Runtime support: procrastination is bliss

• Each operator belongs to an operator context 

• Express algorithms in terms of a common API

– Record the workflow in a control flow graph

• Do not materialize any collection until it is accessed 

– Upon access, assess() it to see if it should be materialized

– If collection is to be materialized, produce() it by walking the control flow 
graph

– If not, go to the last materialized parent and apply recorded operations 
dynamically to produce 



An API for recording algorithmic workflow

• split(T, n, Tl, Th)

– Split collection T at position n into Tl and Th 

• partition(T, h(), k, [Ti],[si] = |T|/k) 

– Partition collection T into k partitions T1 to Tk using h() as the partitioning 
function 

– Size of each partition expected to be s1 to sk 

– Last argument optional and reverts to |T|/k 

• filter(T, p(), f, Tp)

– Filter collection T into Tp using predicate p()

– Output size expected to be f |T | (where f ∈ [0, 1]) 

• merge(Tl, Tr, m(), T) 

– Merge collections Tl and Tr  into T using m() as the merging function 



Example control flow graph
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Optimizing the workflow
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• Use the sum to decide whether cheaper to keep subsequent collection deferred or 
materialize 

• Trigger materialization using rules based on heuristics for access pattern detection 

• Track accumulated numbers 
of cacheline reads and writes 
per materialized collection 



Implementation alternatives

• Four alternatives for incorporating persistent memory into the hierarchy 

– RAM disk: a full-blown file system running on top of main memory (with true 
file system overheads)

– PMFS: a persistent memory file system, optimized for byte-addressable 
storage

– Dynamic array: the typical collection one would use for expandable arrays 
when programming for main-memory

– Blocked memory: an optimized blocked memory implementation of 
expandable arrays



Indicative results: sorting 1M records



Sorting 1M records: implementation alternatives



Summary
• Large memories means that data processing will likely be memory-bound

– No need for separate runtimes for application logic and data management

– Data processed in the managed runtime, using language-integrated querying

– Just-in-time code generation for query processing

• Memories not only large, but also non-volatile

– With different performance characteristics 

–  Write-limited algorithms and a dynamic runtime to optimize performance

• Management at all levels

– Different applications require different representations for the same data

– Workload-driven dynamic data placement
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